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Abstract
Glassy As25Si40Te35 has been studied by x-ray and neutron diffraction as well
as x-ray absorption spectroscopy (EXAFS) at As and Te K-edges. Simultaneous
modelling of the four independent measurements by means of the reverse
Monte Carlo (RMC) simulation technique allowed the separation of partial
pair distribution functions and estimation of the corresponding coordination
numbers. It is shown that the atomic structure of As25Si40Te35 glass can be
presented as a three-dimensional network of twofold coordinated Te, threefold
coordinated As and fourfold coordinated Si atoms.

1. Introduction

The ternary As–Si–Te system exhibits high interest in view of both basic physics and
technological applications. Due to the combination of elements of different valences, this
system is characterized by a very large glass formation region with a wide controllability
range of physical properties such as the glass transition temperature, electrical and optical
energy gaps etc [1–5]. From a technological point of view, amorphous As–Si–Te could be
applied to multilayered heterojunction devices and optoelectronic functional elements. These
glasses are also suitable for high-temperature applications because of a high glass transition
temperature. An advantage of the As–Si–Te alloys is that this material can easily be deposited
on any inexpensive substrate such as glass, ceramics or metal surfaces.

The relation between the switching parameters and other properties of multicomponent
chalcogenide glasses including the As–Si–Te system (e.g. between the switching voltage and
the glass transition temperature, crystallization temperature, electrical resistivity etc) has been
studied extensively so far. It is known that some properties of amorphous As–Si–Te depend
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strongly on the composition. For example, the electric-conduction activation energy of these
glasses changes from 0.6 to 1.5 eV [6]. It is supposed that the electrical conductivity is affected
by Si-containing structural units in amorphous As–Si–Te alloys.

However, still little is known about the relation between the physical properties and the
structure of amorphous chalcogenides, especially those containing three or more components.
The latter is not well investigated and elucidated, since an understanding of the structure of
multicomponent alloys requires knowledge of the partial atomic distributions, which are hard to
obtain experimentally. Often it is difficult (if possible at all) to perform the necessary number of
independent diffraction experiments. The reverse Monte Carlo simulation method [7] enables
one to obtain the partial distribution functions of a multicomponent alloy from a reduced
number of experimental data. It has been shown in [8, 9], for example, that in favourable cases it
is possible to get a set of reliable partial pair distribution functions for a binary alloy from two
independent scattering experiments (x-ray diffraction and neutron diffraction). Furthermore,
RMC can be used as a tool to combine diffraction and EXAFS data within one simulation run.

In this work we study the local atomic structure in amorphous As25Si40Te35, which is
situated near the composition As2Te4Si4, exhibiting one of the highest softening temperatures
in the glass domain of the As–Si–Te ternary system [1]. We performed x-ray diffraction (XRD),
neutron diffraction (ND) and EXAFS measurements at the As and Te K-edges and analysed
them with the RMC.

2. Experimental details

The amorphous alloy As25Si40Te35 was prepared from pure As (99.999%), Si (99.999%) and Te
(99.99%). Appropriate amounts of the components were mixed and sealed in a quartz ampoule
under a pressure of ∼1 mbar. The ampoule was heated up to 950 ◦C and kept for 24 h. After
homogenization, the sample was quenched in water.

The neutron diffraction was performed with the liquid and amorphous materials
diffractometer SLAD at the Studsvik Neutron Research Laboratory (NFL), Studsvik,
Sweden [10]. The powdered sample was contained in a thin-walled vanadium container. The
incident wavelength of neutrons was 1.11 Å. The scattered intensity was measured between
0.4 and 10.4 Å

−1
. The static structure factor was obtained from the scattering intensities

after applying corrections for absorption, multiple scattering and inelasticity followed by
normalization to a vanadium standard, which was done with the CORRECT program described
in [11].

X-ray diffraction was carried out at the BW5 experimental station [12] at HASYLAB,
DESY, Hamburg, Germany. The sample material was filled into a thin-walled (0.02 mm) quartz
capillary of 2.0 mm in diameter. The energy of the incident beam was 99.8 keV. The size of the
incident beam was 1 × 4 mm2. Raw data were corrected for background, polarization, detector
dead-time and variations in detector solid angle.

The EXAFS measurements were carried out at the beam lines A1 (As K-edge) and X1
(Te K-edge) of HASYLAB in transmission mode. The sample was finely ground, mixed with
cellulose powder and pressed into tablets. The sample quantity in the tablets was adjusted to
the composition of the sample and to the selected edge.

3. RMC modelling

The XRD, ND and EXAFS experimental data for As25Si40Te35 glass were modelled
simultaneously in the framework of the reverse Monte Carlo simulation technique [7]. The
aim of the RMC modelling procedure is to generate a three-dimensional arrangement of atoms
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that reproduces the experimental total structure factors, EXAFS modulation curves as well as
the constraints given. This is achieved by modifying an initial configuration with the number
density, ρ0, by random atomic moves. After each move, the partial pair distribution functions
are determined by counting the number ni j(r) of j -type neighbours in a shell with thickness
�r at the distance r around a chosen central atom of type i and averaging over all i atoms
within the configuration:

gRMC
i j (r) = 〈ni j (r)〉

4πρ0r 2 · �r
. (1)

To evaluate the diffraction data, the partial pair distribution functions obtained from the RMC
configuration are transformed into the Q-space, yielding partial structure factors SRMC

i j (Q),
which can be combined into the model total Faber–Ziman structure factor [13]

SRMC(Q) =
∑

i, j

wi j(Q)SRMC
i j (Q), wi j(Q) = ci c j fi (Q) f j (Q)

〈 f (Q)〉2
, (2)

where the factors fi (Q) represent the Q-dependent atomic form factors for x-ray diffraction
and are to be substituted by the coherent scattering lengths bi for neutron diffraction.

The model EXAFS modulation can be obtained from the model pair distribution functions
by applying the expression [14]

XRMC
i (k) = 4πρ0

∑

j

c j

∫ R

0
dr r 2γi j(r, k)gRMC

i j (r), (3)

where i denotes the absorbing species.
The EXAFS backscattering coefficients γi j of the atomic pairs consisting of phase and

amplitude factors were determined in this work using the FEFF8-code [15] in the SCF (self-
consistent field) approximation. The contributions involving more than one backscattering
atom were neglected during the calculation of the backscattering signals, since the RMC uses
the pair distribution function formalism. As the EXAFS signal is strongly damped due to the
limited mean free path of the electrons emitted during the absorption process, the integration
limit R in equation (3) has been chosen to contain only the first coordination shell.

Because of the phase shift of the backscattered electrons, the peaks in X (r)—the Fourier
transform of X (k)—do not correspond to real r -space distances. Therefore X (r) can be
obtained from the partial pair distribution functions in two steps only: first X (k) should be
calculated from the corresponding gi j(r) functions according to equation (3) and then X (k)

should be transformed to X (r). For this reason the fit to the experimental data has been carried
out in the reciprocal space.

The difference between the experimental functions Sexp(Q) and X exp(k) (or, in most
cases, kn X exp(k), n = 2, 3) and those derived from the RMC model is calculated using the
expression [14]

χ2 =
∑

α

1

σ 2
k

∑

i

[SRMC,α(Qi ) − Sexp,α(Qi )]2 +
∑

β

1

σ 2
l

∑

i

[kn
i XRMC

β (ki) − kn
i X exp

β (ki)]2.

(4)

If the value of χ2 has increased after moving an atom, this move is accepted with the probability

P ∼ exp

(
−χ2

new − χ2
old

2

)
. (5)

On the other hand, all moves leading to a reduction in χ2 are accepted. Thus, in an iterative
process the fit between the experimental and the model functions is improved, but being trapped
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Figure 1. The experimental (circles) XRD and ND structure factors for amorphous As25Si40Te35

compared to the RMC fits (lines) obtained by simultaneous simulation of the XRD, ND and EXAFS
data under application of the coordination constraints: 〈NAs〉 = 3, 〈NSi〉 = 4.

in local minima is avoided. The parameters σl substitute the temperature within the framework
of Monte Carlo modelling algorithms and thus regulate the impact that an individual data-set
has on the whole simulation.

4. Results and discussion

The experimental XRD and ND structure factors for amorphous As25Si40Te35 are plotted in
figure 1, while the experimental k3 X (k) EXAFS curves obtained at As and Te K-edges are
shown in figure 2.
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Figure 2. The experimental (circles) As and Te K-edge k3 X (k) curves for amorphous As25Si40Te35

compared to the RMC fits (lines) obtained by simultaneous simulation of the XRD, ND and EXAFS
data under application of the coordination constraints: 〈NAs〉 = 3, 〈NSi〉 = 4.

The atomic density ρ0 = 0.033 65 Å
−3

is used throughout the RMC simulations. This
has been calculated from the experimental mass density of the As25Si40Te35 glass prepared
in the same way as our sample and studied in [16]. The modelling was started with a random
configuration of 500 atoms, where the distances of closest approach for all pairs were fixed to be
1.8 Å (enough below the respective sums of the covalent radii) and a rough fit to the diffraction
data was obtained. The partial pair distribution functions derived from this configuration
showed distinct first maxima and allowed us to choose the following minimum interatomic
distances: rAsAs = 2.2 Å, rAsTe = 2.4 Å, rAsSi = 2.1 Å, rSiSi = 2.2 Å and rSiTe = 2.3 Å.
Analysis of the fits and partial pair distribution functions showed that the diffraction data do
not support direct Te–Te neighbours, therefore rTeTe = 3.1 Å was chosen. This (the absence
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Figure 3. RMC simulated partial pair distribution functions for glassy As25Si40Te35: grey—without
coordination constraints; black—with the constraints 〈NAs〉 = 3, 〈NSi〉 = 4.

of direct Te–Te bonds) correlates with the results of Raman spectrometry carried out in [16],
where no Te–Te band was found. No coordination constraints were applied at this stage of
modelling.

After the first runs the box size was doubled in each direction. With this configuration, the
XRD and ND diffraction experiments and both EXAFS curves were fitted simultaneously by
reducing the parameters σl stepwise. Finally, the box size was again increased to 32 000 atoms,
mainly to achieve good counting statistics when determining the gi j(r) following equation (1).

The partial pair distribution functions gi j(r) calculated from the unconstrained model are
plotted in figure 3. A remarkable feature of all gi j(r) functions is a pronounced separation of
the first and second coordination spheres. This is obviously due to strong covalent bonding
in the alloy studied. The values of the mean inter-atomic distance ri j and the coordination
numbers Ni j obtained from the partial pair distribution functions gi j(r) are given in tables 1
and 2, respectively. The partial coordination numbers have been calculated by integrating
4πr 2ρ0c j gi j(r) from the left-hand edge of the first peak to the first minimum in the pair
distribution function.

Technologically important glasses often consist of three or more components. For such
complicated systems, detailed structural information can only be obtained by the combination
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Table 1. The mean nearest-neighbour distances ri j for amorphous As25Si40Te35. The uncertainty
of ri j is ±0.03 Å.

Pair i j As–As As–Si As–Te Si–Si Si–Te

ri j (Å) 2.43 2.38 2.58 2.36 2.49
(without CN constraints)
ri j (Å) 2.43 2.38 2.58 2.37 2.52
(with constraint: 〈NTe〉 = 2)
ri j (Å) 2.42 2.38 2.57 2.38 2.50
(with constraints: 〈NAs〉 = 3, 〈NSi〉 = 4)

Table 2. Coordination numbers Nij for amorphous As25Si40Te35. The error of unconstrained
coordination numbers is about 10%.

Pair i j As–As As–Si As–Te Si–Si Si–As Si–Te Te–As Te–Si

Nij (without CN 0.86 1.84 0.57 1.07 1.15 1.33 0.40 1.52
constraints)
Nij 0.86 1.85 0.59 1.02 1.16 1.37 0.37 1.57
(with constraint
〈NTe〉 = 2)
Nij 0.82 1.82 0.32 1.38 1.13 1.50 0.23 1.71
(with constraints
〈NAs〉 = 3,
〈NSi〉 = 4)

of different techniques. It is interesting to see the depth of results that can be obtained from
available experimental data. Though there are some factors influencing the reliability of models
in an uncontrollable way (e.g. systematic errors), still in most cases a rough estimate can be
given.

The resolution (i.e. the bin size in r -space needed to reproduce the data in Q-space after
Fourier transformation) of a diffraction measurement is given by δr = π/(Qmax − Qmin). It is
not to be mixed with the formula connecting lattice spacing and Q values (d = 2π/Q). The
latter can be used for crystalline materials, while the first expression is valid for both periodic
and non-periodic systems. The resolution also gives the number of free parameters in a fitting
procedure. If the width of an r -space feature is �R, then the number of bins (and the number of
free parameters) is given by �R/δr . The resolution of an EXAFS dataset is π/2(kmax − kmin).
The physical background of the difference is that the backscattered photoelectron travels twice
between the absorber and the backscatterer, thus the phase-shift formula contains 2kr and not
simply kr , as for diffraction. In the case of multiple (and non-degenerate) data-sets, the number
of free parameters is summed up. We try to decompose five overlapping peaks between 2.1
and 3.0 Å. Over this range the total number of free parameters is ∼17 in our case. Additional
information can be incorporated into the fitting by applying different cut-offs for different atoms
(this way, for example, gAsTe(r) is forced to be 0 for r � 2.4 Å). The situation can be improved
further by incorporating a priori chemical knowledge in the modelling (e.g. by constraining the
coordination number of an element). These features of the RMC are exploited in this study, as
this will be seen further.

The combination of available experimental information with real-space constraints thus
allows us to determine bond lengths and coordination numbers. The error of these quantities
depends most strongly on two main factors: (1) the weight of a given partial gi j(r) function
in experimental data—the error is certainly larger in case of weakly scattering or low-
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concentration species; (2) due to a correlation between coordination numbers and peak
positions, the separation of gi j(r)s is also difficult if there are components with similar size
and scattering power.

The error in the bond lengths is about ±0.03 Å. Possible sources of the error are mainly
peak shape asymmetry and inaccuracy of backscattering amplitudes. The only exception is the
mean Si–Si distance. As Si scatters weakly, both x-ray and neutron diffraction measurements
are not quite sensitive to Si–Si correlations. Here the estimated uncertainty is about ±0.06 Å.

The uncertainty in total coordination numbers is about 5–10%, and this can be considered
to be a lower limit of the error in (partial) coordination numbers obtained by unconstrained
simulations. The uncertainty in coordination numbers can be decreased by using constraints
(e.g. forcing As to be threefold coordinated—see below). It should also be mentioned that the
average coordination numbers obtained by RMC simulation do not necessarily mean that all
atoms of a respective constituent element have the same number of nearest neighbours. As
RMC tends to produce the most disordered configuration compatible with the experimental
data and constraints, the distribution of coordination numbers can be broad (e.g. along with
twofold-coordinated Te, there can be Te atoms with one, three or four neighbours as well).
If there is a special interest in atomic configuration and coordinates, these ‘defects’ can be
eliminated by using some special constraints in the simulation. It was, however, beyond the
scope of the present study, where atomic structure at the level of pair distribution functions is
analysed.

The average numbers of atoms around As, 〈NAs〉 = 3.3±0.3, around Si, 〈NSi〉 = 3.6±0.4
and around Te, 〈NTe〉 = 1.9 ± 0.2, were obtained without coordination constraints. In general,
these values correlate rather well with the usual coordination of As (3), Si (4) and Te (2).
However, As appeared to be overcoordinated, while Si is undercoordinated.

At the next step we performed RMC simulations with a constrained coordination number
of Te (〈NTe〉 = 2). Other parameters remained unchanged. The coordination numbers obtained
are given in tables 1 and 2. The mean interatomic distances for most pairs are the same as those
obtained in the ‘unconstrained’ simulations, and only the Si–Te bond distance has slightly
increased from 2.49 to 2.52 Å. The coordination numbers are not changed. This suggests that
As and Si are mixed if they are not constrained: 〈NAs〉 is larger than three, while 〈NSi〉 is smaller
than four.

Therefore we carried out further simulations, where the coordination numbers for As
and Si atoms were constrained to be three and four, respectively. The minimum interatomic
distances were the same as in the previous runs. The simulated total structure factors and
k3 X (k) curves are compared with the respective experimental functions in figures 1 and 2.
The partial pair distribution functions, gi j(r), are plotted in figure 3. The values of ri j and
Ni j obtained are listed in tables 1 and 2. Also, in this case the mean interatomic distances
are practically the same as those obtained in the previous simulation runs. However, the
coordination numbers reached their expected values, namely: 〈NAs〉 = 3.0, 〈NSi〉 = 4.0 and
〈NTe〉 = 1.9 ± 0.2. (As 〈NAs〉 and 〈NSi〉 are not free parameters, we do not give errors for
them.) It is noteworthy that the number of Si neighbours has been increased in the ‘As and
Si constrained’ case, mostly due to the building of additional Si–Te and Si–Si bonds. At the
same time, As atoms lost nearly half of their Te neighbours, while As–As and As–Si pairs were
preserved. It appears from the results of RMC modelling that As and Te atoms try to avoid
each other in amorphous As25Si40Te35. Even in the ‘unconstrained’ case the As–Te and Te–As
coordination numbers were the lowest. The highest coordination numbers show As–Si, Si–Te
and Si–Si pairs (table 2). These findings correlate very well with values of the single covalent
bond energies estimated in [4]. They are 53.4, 50.49, 43.81, 43.4, 38.61 and 34.0 kcal mol−1

for Si–Si, Si–As, Si–Te, As–As, As–Te and Te–Te pairs, respectively.
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The average coordination number (〈N〉 = 0.25〈NAs〉+0.40〈NSi〉+0.35〈NTe〉) obtained in
the second ‘constrained’ case is 3.0±0.1. This value is higher than the characteristic parameter
of topological phase transition in chalcogenide glasses (〈N〉 = 2.67) suggested by Tanaka [17]
and therefore indicates a three-dimensional network structure in glassy As25Si40Te35.

Srinivasan et al [3, 4] suggested that AsTe3/2 and SiTe4/2 are the basic structural units of
As–Si–Te glasses. As follows from the results obtained in our study, the network structure of
glassy As25Si40Te35 cannot be described simply by the AsTe3/2 and SiTe4/2 units.

5. Conclusions

Simultaneous reverse Monte Carlo simulation of the x-ray and neutron diffraction data with the
EXAFS spectra measured at As and Te K-edges on glassy As25Si40Te35 has been carried out.
Several simulation runs with different constraints were analysed. At the end, the combination
of the four independent measurements and use of some plausible coordination constraints
allowed separation of the partial pair distribution functions. The atomic structure of amorphous
As25Si40Te35 can be presented as a three-dimensional network of threefold-coordinated As,
fourfold-coordinated Si and twofold-coordinated Te atoms. Si–Si and As–As bonding was
found to be significant. The latter excludes the predominance of AsTe3/2 units in As25Si40Te35.
On the other hand, Te is coordinated mostly by Si.
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